Philosophy 2310 Definitions and Terms used

A note to the reader: There are many different ways of defining some of these terms which in the end turn out equivalent. In all cases the definition I give agrees with the book's definition if it has one. LPL has a helpful glossary at the end of the book. But in reading elsewhere you may come across different definitions for some of these terms.

Throughout, Γ refers to an arbitrary set of sentences such as $\{P, Q, R\} = \Gamma$ or $\{\forall x P(x), \forall x Qx, \exists x \forall y Rxy\} = \Gamma$

 φ and ψ refer to arbitrary sentences such as when P $\models Q$ might be represented as $\varphi \models \psi$ or the conjunction $\varphi \land \psi$ might represent any of $P \land Q$, $\forall x P(x) \land \forall x Q(x)$, or $\exists x P(x) \land (P(a) \lor Q(b))$

=def means that what follows is the definition of what came before (is equal by definition to...) Example: The definition of a tautology is a sentence which is true in every truth value assignment. It is true that all tautologies are theorems, but it is not true *by definition* that all tautologies are theorems. All tautologies are theorems because of the Completeness Theorem.

Proof terms:

 $\Gamma \models \varphi$ =def there is a proof of φ (φ is the last line) where all of the premises are members of Γ (there might be more members of Γ than are used in the proof). To count as a proof, each line has to be justified by some basic rule of our proof system \mathcal{F}

Example: $\{P \rightarrow Q, P\} \models Q$

```
Γ is proof-inconsistent =def Γ ⊨ ⊥
Γ is proof-consistent =def Γ is not proof-inconsistent.
Examples: {P&Q,Q→R} is proof-consistent. {P, Q, ¬Pv¬Q} is proof-inconsistent.
φ is a theorem =def ⊢φ (that is, Γ ⊢φ when Γ=the empty set which has no members – so
φ is a theorem no premises at all.)
Example: ⊢ Pv¬P
φ is stronger than ψ =def φ ⊢ψ and it is false that ψ ⊢φ.
φ is weaker than ψ =def ψ is stronger than φ.
φ is proof-equivalent to ψ =def φ ⊢ψ and ψ ⊢φ
```

```
Examples: P is stronger than P \lor Q
Q is weaker than R \land Q
\neg(P \lor Q) is proof-equivalent to \neg P \land \neg Q
```

Semantic terms:

 $\Gamma \models \varphi$ means that φ is a consequence of Γ . It also means that Γ entails φ .

 $\Gamma \models \varphi$ =def every interpretation (TVA in SL) that makes every sentence in Γ true also makes φ true. This is equivalent to saying that there is no interpretation (TVA in SL) that makes all the members of Γ true and also makes φ false.

Example: $\{\forall x P(x), \forall x (P(x) \rightarrow Q(x))\} \models \forall x Q(x)$

 Γ is consistent =def there is an interpretation in which all of the members of Γ are true. Γ is inconsistent =def Γ is not consistent.

An interpretation which makes all of the members of Γ true is called a Model of Γ .

Examples: $\{\exists x P(x), \exists x \neg P(x)\}\$ is consistent.

 $\{\forall x P(x), \forall x \neg P(x)\}$ is inconsistent.

 $I = D: \{a\}$ is a model of $\{\exists x \ x=x\}$

[[[Note that in almost all advanced texts, "consistency" is a proof-theoretic term while "satisfiability" is the semantic term.]]]

 φ is a tautology =def φ is true in every truth-value assignment

 φ is an FO validity =def φ is true in every interpretation.

 φ is a contradiction =def there is no interpretation in which φ is true.

 φ is contingent =def φ is neither valid nor a contradiction. (This is equivalent to saying that there is an interpretation in which φ is true and at least one in which φ is false.)

Examples: $P \lor \neg P$ is a tautology

 $\exists x(P(x) \lor \neg P(x))$ is valid $\exists xP(x)$ is contingent $\exists x(P(x) \land \neg P(x))$ is a contradiction

 φ is independent of $\psi = def \{\varphi, \psi\}$ and $\{\neg \varphi, \psi\}$ are both consistent.

 φ and ψ are independent (of each other) =def all three of { φ , ψ }, { φ , $\neg \psi$ }, { $\neg \varphi$, ψ }, are consistent.

 φ is independent of $\Gamma = \det \Gamma \cup \varphi$ (Γ added together with φ) and $\Gamma \cup \neg \varphi$ are both consistent.

 Γ is mutually independent =def there is no $\Gamma_1 \subset \Gamma$ (no proper subset of Γ) such that $\Gamma_1 \models \varphi$ for some φ in Γ and φ not in Γ_1 . In other words, if you take away some sentence φ from Γ then the rest of the sentences don't entail φ .

Examples: $\exists x P(x) \text{ and } \exists x Q(x) \text{ are independent.} \\ \exists x P(x) \text{ is independent of } \{\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))\} \\ \{\forall x R(x,x), \forall x \forall y (R(x,y) \rightarrow R(y,x)), \\ \forall x \forall y \forall z [((R(x,y) \land R(y,z)) \rightarrow Rxz)] \text{ is mutually independent.} \end{cases}$

Metatheorems that relate proofs and semantics:

The Soundness Theorem says that for any Γ and for any φ , if $\Gamma \models \varphi$ then $\Gamma \models \varphi$. This is equivalent to: if $\Gamma \cup \neg \varphi$ is proof-inconsistent then $\Gamma \cup \neg \varphi$ is inconsistent. This is equivalent (by contraposition) to if $\Gamma \cup \neg \varphi$ is consistent then $\Gamma \cup \neg \varphi$ is proof-consistent. Since these are arbitrary this is equivalent to: for any Γ , if Γ is consistent then Γ is proof-consistent.

The Completeness Theorem is the converse of the Soundness Theorem. It says that for any Γ and any φ , if $\Gamma \models \varphi$ then $\Gamma \models \varphi$.

Other major metatheorems of FOL:

Compactness Theorem: Γ is consistent if and only if every finite subset of Γ is consistent.

Church's Theorem: First order logic is undecidable (as long as the language contains at least one two-place predicate). This means that there is no algorithm for correctly answering yes or no to the following question: is $\Gamma \models \varphi$ true or false? (this algorithm would have to work for any Γ , φ) Equivalently, there is no algorithm for answering: is Γ consistent? Is φ a theorem?, etc.

For the final exam

For our final exam, in addition to the terms above, you should also know and be able to manipulate the following properties of relations:

R is reflexive =def R satisfies the condition that $\forall x R(x,x)$ R is symmetric =def R satisfies the condition that $\forall x \forall y [R(x,y) \rightarrow R(y,x)]$ R is transitive =def R satisfies the condition that $\forall x \forall y \forall z [((R(x,y) \land R(y,z)) \rightarrow Rxz)]$